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In this paper we consider fourth-order difference approximations
of initial-boundary value problems for hyperbolic partial differential
equations. We use the meihod of lines approach with both explicit
and compact implicit difference operators in space. The explicit
operator satisfies an energy estimate leading to strict stability. For
the implicit operator we develop boundary conditions and give a
complete proof of strong stability using the Laplace transform tech-
niqua. We also present numerical experiments for the linear advec-
tion equation and Burgers’ equation with discontinuities in the solu-
tion or in its darivative, The first cquation is used for modeling
contact discontinuities in fiuid dynamics; the second one is used
for modeling shocks and rarefaction waves. The time discretization
is done with a third-order Runge-Kutta TVD method. For solutions
with discontinuities in the solution itself we add a filter based on
secand-order viscosity. In case of the non-linear Burgers’ equation
we use a flux splitting technique that results in an energy estimate
for certain difference approximations, in which case also an entropy
condition is fuifilled. in particular we shall demaonstrate that the
unsplit conservative form produces a non-physical shock instead
of the physically correct rarefaction wave. In the numerical experi-
ments we compate our fourth-arder methods with a standard sec-
ond-order one and with a third-order TVD method. The results show
that the fourth-order methods are the cnly ones that give good
results for all the considered test problems. @ 1995 Academic Press, Inc.

1. INFRODUCTION

It is well known that high-order accurate difference operators
are more efficient than low-order ones for hyperbolic problems
with smooth solutions, except for very low accuracy require-
ments in the solution, The theoretical basis for this conclusion
is found in [7, 17]. Nevertheless, in practice most calculations
are done with first- or second-order approximations. One of
the reasous for this is the extra dilticulty thal arises near the
boundarics. It is always possible to derive non-symmetric opera-
tors near the boundaries that have sufficient formal accuracy,
but it is more difficult when requiring that the method also be
stable. In[12, 16] high-order methods for initial-boundary value
probiems are constructed based on the work by Kreiss and
Scherer [8. 9]. The approximations satisfy an energy estimate
that guarantees sirict stability. For integrations over long time
intervals this is an especially important property.

* This work has been sponsored by NASA under Contract NAS 2-13721.

Stability analysis based on Laplace transform technigue leads
to strong stability if the Kreiss condition is satisfied as shown
in [5]. In this book there is also a complete analysis of a semi-
discrete fourth-order approximation based on the standard five-
point scheme, and the Kreiss condition is shown to be satisfied.
Strict stability, however, is not an automatic consequence of
this theory.

In Scction 2 we give a bricf review of the currently available
results for fourth-order dccurate operators,

Compaclt dilference operators (Padé type) for the space parl
of PDEs have been considered, for example, in [17, 14, 10].
These methods are based on an approximation 4/dx — P~'Q,
where P and @ are non-diagonal difference operators. In this
way the error constant can be substantially reduced, and the
extra work required for solving the banded systems in each
time step may well pay off. :

In [I] a boundary procedure is developed for the fourth-
order case, where P and @ are tridiagonal, and it is verified
tha the Kreiss condition is satisfied. However, the step from
the Kreiss condition to stability is not carried out. No such
general theory is currently available; in [5] only the explicit
case P = [ is treated. In Section 3 we present the full theory
for the implicit fourth-order approximation by generalizing the
Laplace transform technique. We construct boundary condi-
tions such that the resulting approximation is strongly stable
and gives a fourth-order error estimate.

For problems with non-smooth solutions, the error estimates
based on the truncation error break down. Still the fourth-order
methods may well also be competitive with lower order ones
in this case. This is demonstrated in Section 4, where we present
anumber of numerical experiments. We use the linear advection
cquation and Burgers’ equation with discontinuitics in the solu-
tion or in its derivative. The first equation is a good model for
contact discontinuities in fluid dynamics; the second one is
used for modeling shocks and rarefaction waves. The time
discretization is done with a third-order Runge-Kutta TVD
method.

For solutions with discontinuities in the derivatives, for ex-
ample rarefaction waves, no extra viscosity ierms are necessary.
However, for discontinuities in the solution itself, we expect
oscillations in the numerical solution. Therefore, we add a filter
based on second-order viscosity. This takes the formal accuracy
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down to first order, but by using a switch as coefficient for the
viscosity term, this loss of accuracy is limited to the immediate
area around the discontinuity.

In case of the non-linear Burgers’ equation we use a fux
splitting technique that results in an energy estimate for certain
difference approximations, in which case also an entropy condi-
tion is fulfilled as described in [13]. In particular we shall
demonstrate that the unsplit conservative form produces a non-
physical shock instead of a rarefaction wave.

2. EXPLICIT DIFFERENCE OPERATORS
It is common to use the energy method in order to establish

well-posedness of initial-boundary value problems (IBVP) for
hyperbolic PDEs,. Consider the model problem

wmtu=90 0=x<w, =0,

w0, 1) = g(1), (1)
u(x, 0) = f(x),

where the initial data f(x) is assumed to have compact support.
We consider the quarter space problem for convenience; do-
mains with two boundaries are handled analogously (cf. Section
4). The standard [£? scalar product and the corresponding norm
are defined by

(u,v) = J: u(xwx) dx, ||luf® = (u, u).
To arrive at an a priori estimate for Eq. (1) we use the follow-
ing tools:
(i) Integration by parts (assuming compact support):
d
o1l = 20 ) = =20, 1) = w0, 1)*.
(ii} Boundary conditions:

w0, 1) = g(2).

Hence,
< P = 5007,

which after integration with respect to ¢ vields an energy es-
timate

lut, 0l = I + | ls(niz .

For the outflow problem,
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w—u, =0, 0=x<m®,

u(x, 0) = flx),

t=0,
(2)

no boundary condition is needed to obtain an energy estimate;
in fact, one can estimate the solution at the boundary x = O:

e, 1P + [, 0, 2 dr = 112

It is also possible to derive an energy estimate for the nonlin-
ear conservation law

wtF,=0, 0=x<w, =0,
w®©,1) =gty fF'(u)>0, 3)
ux, 0) = flx),

provided F{u) satisfies a certain structural hypothesis. The key

to obtaining an energy estimate lies in splitting the flux deriva-

tive F, into two parts,
Fo=F-Gr+G=F-G)tGu,

where G = G{(u) satisfies Euler’s inhomogeneous differential
equation

G’u=—G+F1:>G=lrF(v)dv.
.t

Hence, F, can be written as
F,. = (G'w) + G'u,,

which will be referred to as the canonical splitting of F,. The
solution of Eq. (3) then satisfies

2 e = ~20, F) = =20, (G'u)) = 2, G'w)
= 2uG ' 'u(0, 1),

where
uG'u = ju F'v) dv. )

Thus, in order to obtain an energy estimate we must confine
ourselves to flux functions F such that the sign of F'(x) deter-
mines that of (4). This is true if, for instance,

sgn(u) = sgn(F'(w)) or sgn(F'(u)) > (<) 0.

The former condition is true for Burgers® equation, whereas
the latter holds for all linear, constant coefficient equations.
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We thus have an example of the previously mentioned structural
hypothesis. The canonical splitting and the structural hypothesis
can be generalized to symmetrizable systems and several space
dimensions [13]. Hence, if we are to obtain an energy estimate
for a non-linear conservation law, the list of tools is aug-
mented by

(iii)
(iv) Structural hypothesis on F.

Canonical splitting of F,.

The analysis of the semi-discrete case can be carried out in
much the same way as in the continuous case; integration by
parts is replaced by summation by parts. The main difficulty
lies in the treatment of the analytic boundary conditions.

The discrete L? scalar product and norm are defined as

=]
(U, VYo = Z} wih,  |ulfe = (0 ).
£

To make the notation less cumbersome we shall use the conven-
tions (i, v) = (#, v)o,» and |Jul| = ||u]}s... . The difference operator
D is defined by

1 < :
(Du)j = Z ; dj,[uk, 7= 0, ], very

where D is a local operator, ie., |, — j| =1, lm;, — j| = m for
some constants /, m, and 7 is the (uniform) mesh size. For
certain operators one can find a local, symmetric positive defi-
nite operator (SPD) H [8, 9, 3, 2] such that

(u, H Dv) = —uyv, — (Du, Hv) &)

in complete analogy with the analytic case. As usual we have
assumed compact support. It can be shown [8] that it is impossi-
ble to choose H = T for consistent approximations D. An
example of a fourth-order accurate operator with third-order
boundary closure satisfying Eq. {(5) is provided in the Appendix.

The treatment of the analytic boundary conditions can be
done in various ways. One possibility is to represent the analytic
boundary conditions as a projection operator T. Equation (1)
is then discretized as

du; dg)
— 4 L= - —-= =
=+ (T Du), ((1 T~ - 0,1, .., ©

HI(O) =f_,l"e
where
(Tuy =0 (Tuy=uw, j=12 .,

and & = (g(f)x ...)", g(1) is the analytic boundary data, and x
is a generic component. The actual value is of no importance.
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If uy(0) = fo = g(0) it follows that uy(1) = g(2) or, equivalently,
({ — T)(u — &) = 0. Hence, the analytic boundary condition
is fulfilled for all time. Assuming that f and g satisfy certain
compatibility conditions one can prove the estimate [12]

(o), Hu(t) = (£ Hp) + [ g0 d.

Since A is a bounded, symmetric positive definite operator the
above equation yields

Il < const. (||f||2 + f; PEC) dr) )

More generally, given a norm H, any linear boundary condi-
tion can be represented as a projection operator T such that
HT = TTH [12]. This property together with Eq. (5) makes it
possible to prove strict stability for arbitrarily accurate semi-
discrete approximations of hyperbolic systems in one space
dimension. By strict stability we mean that the growth rate of the
analytic and the semi-discrete solutions is identical. Confining
ourselves to diagonal norms H it can be shown that operators
D satisfying Eq. (5) will result in strictly stable semi-discrete
approximations of hyperbolic systems in several space dimen-
sions. The stability results are valid for curvilinear domains
with non-smooth boundaries; cf. [12] for a complete presenta-
tion. For explicit examples of high-order difference operators
corresponding to diagonal norms we refer to [11, 2, 16]. If we
relax Eq. (5) to

(u, HDv) = B(uy, v;) — (Du, Hv), uy = (g ... u)",

(7)

Up = (Uy ... v,)",

for some function B, and some constant g, it is in general no
longer possible to prove strict stability. However, it may still
be possible to prove stability using laplace transform tech-
niques [5]; at outflow boundaries one uses extrapolation, and
at inflow boundaries the differential equation is used to impose
proper analytic boundary conditions (cf. Section 3). Yet another
technique for enforcing the analytic boundary conditions is
used [3], where a penalty function F' (simultaneous approxima-
tion term) is added to the right-hand side of Eq. (6) after setting
T = I. The penalty function is constructed such that the solution
of the semi-discrete scheme will satisfy the analytic boundary
conditions to some order of accuracy. It can be shown that
the resulting semi-discrete scheme is sirictly stable for one-
dimensicnal constant-coefficient hyperbolic systems. Finally,
we mention that the projection technique outlined above carries
over to the non-linear case if the semi-discrete equation is based
on the canonical splitting of the flux derivative and if D satisfies
Eq. (5) for some diagonal norm. This analysis will be carried
out in a forthcoming paper.
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3. IMPLICIT DIFFERENCE OPERATORS

In this section we shall construct boundary conditions for
the standard fourth-order implicit approximation and prove sta-
bility. It has been shown in [4] that it is impossible to enforce
Eq. (5) for sufficiently accurate boundary approximations as
long as the matrix # in the norm is non-diagonal only in a
neighborhood of the boundary, Therefore, we shall use the
Laplace transform technique to prove stability. Note that for
the two-boundary problem, however, the semi-discrete solution
may grow exponentially in time even if the analytic solution
is bounded in time. This is in agreement with the discussion
in Sec. 2, since one cannot in general prove strict stability using
the Laplace transform technique. The step from the Kreiss
condition to the stability estimate is not covered by existing
theory. We shall use the same type of technique as used for
explicit approximations in [5], but it will be modified so as to
apply to implicit operators.

We first consider the ouiflow problem

ulzuxy ()Ex(w’

ufx, 0) = f(x),

0=y

(8}

Let u; be the approximation of i, (x;, ). The standard fourth-
order implicit approximation used at inner points is

1 1 .
’6“(Uj—1 +4v; + Vi) = ﬂ(”}ﬂ —u), j=12,..

Since there is no boundary condition for u at x = 0), we use a one-
sided approximation at j = (. A Taylor expansion shows that

1
vy + 2u, = 5-};(—5110 + duy + uy)

has a truncation error of order /* (for a systematic derivation
of high-order approximations, see [10]).
Let the operators P, Q be defined by

-

é (o + 2uy), =0,
(Pu)j = 9 1
E(ui" +4u ), j=1,2,.
¥ 9)
2}Th(—Smo + diuy +uy), j=0,
(Qu); = |
\EE(M;‘H = ), F=L2,.,

where the boundary approximation has been normalized so
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that P is symmetric, For general problems, we solve for the
approximation v of u, from

(Pu), = (Qu), j=01, ..,
and substitute v into the general approximation of the differen-

tial equation. For our model problem, the approximation can
be written as

du) .
P— = iy = 0, 1, ceen
( i), (Qul, J (10)

w0 =f.

We need to know that our approximation is solvable. Further-
more, the operator P is going to be used to define a norm. We
have the following.

LEMMma 3.1,
n Co.

P is a symmetric positive definite operaror

Proof. The matrix representation of P shows that it is sym-
metric. We have :

‘!;l%(u, PU) = (lugll + 2“0!4![) + (2“]“0 + 8|H||2 + Zuluz)

+ Quatty + 8uy|? + 2upu) + - - -
= fugl* — dlugte] + 6lu|? + 4 D |2
=
2 4 2z 2 2
= Ju|” — 3 lutol? — Shans[* + G|
- 1
+4 P = —lul?
3l =
which proves the lemma. |
For the purpose of deriving stability and error estimates, it
is convenient to rewrite the approximation with the boundary

scheme singled out. With inhomogeneous terms in the boundary
approximation, (10} becomes

(Pd—“)_: Q) j=1,2 .,

dr
(an
dul
(P E)o = (Qu) + g,
w(0) = f;.

We prove the following.
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Lemma 3.2.  Consider (11} with f = Q. The solution satisfies
the estimate

el + j ('] |u, (7| dr =< const. fo lhg(D|*dr, j=0,1,...

Progf. The Laplace transformed approximation is

s(Py; =(Qd);, j=12, .., (12
§(P), = (Qd), + &, (13
Jlal| < e, (14)

with the characteristic equation at inner points

St +de+ 1)y=3(*—1), §=sh, (15
This equation has exactly one root «; with |«,| < 1 for Re(3) >
0. In order to prove this, we first note that there is no root «
with || = 1 for Re(s) > 0. If there were such a root k = e*,
£ real, then the periodic problem would have growing solutions
with time. This contradicts the fact that the symbol of the
operator P~ has purely imaginary eigenvalues, The roots «
are continuous functions of § except at § = 3. In the limit, as
§tends to oo,

K '_2+\/.§,
Ky = '_2_\/5,

| < 1,

K| > 1.

Furthermore, x, is continuous at the exceptional point § = 3,
and we have x; = —3, k; =  at this point. For all other § in
the right half-plane we have |x;| > 1.

Therefore, if Re(5) > 0, there is only one root «, of (15)
with [#;| << 1, and the general solution of (12) is

i, = ok,
Inserting the solution into the boundary equation (13) gives
D(Ho, = kg, (16)
where
D® = K1 + 2k) + 35 — 4, — D).
The Kreiss condition is fulfilled if
D(F) # 0, Re(® = 0.

Assume that this condition is not satisfied. Then we solve the
equation (¥ = 0, and substitute

F=H-5+ 4k + D1 + 2k), x5 # —%
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into (15). The resulting equation has the only possible solution
k; = 1, corresponding to ¥ = 0 in (15). But a perturbation
calculation with § > 0, § <€ 1 in (15) shows that ¥, = —1,
i; = 1. Since D(§) # 0 also for the exceptional value &, =
—1, we have shown that the Kreiss condition is fulfilled. There-
fore we get from (16)

lai| = const]hgl;
ie.,
|&;| < const.[hg], Re(s) =0, j=0,1,..

By integrating |#;|* along the line Re(s) = 0 and using Parseval’s
relation, we get

j: |s;(7)|? d7 = const. f: lhg(D*dT, j=0,1,..

But 1;(7), 7 = t, does not depend on g{7), 7 > . Therefore,
when considering ¥;(7) in [0, ¢], we can as well set g(7) = 0
in (¢, @), This gives the estimate

[ byl ar=const. [ Ihg(@ldn j=0.1,.. a7

The final estimate is obtained by using the energy method.
Recalling the definition (9) of (Pu);, (Qu);, Eq. (11), and that
P is SPD, we have for some constants ci

2

d
=t Pu) = 20, Qu) + 2ughg = Y auu + 2ushg,

ij=0
implying

[lee(e)]|> = const.u(t), Pu(t))
2
= const. ( f U (2 |eg; (P)]? + |hg(’r)l2) dr.
J=0

The final estimate now follows by using (17). |

We shall now prove that the approximation is strongly stable.
Consider first the auxiliary problem

dv
PZ| = L j=1,2, .
( dz),- (Qu);, J

(18)

Ug = Uy,

v,(0) =1

By differentiating the boundary condition with respect to ¢, we
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cai eliminate dvo/dr such that (P dv/dr); is well defined also
tfor j = 1. We now use the scalar product and norm

(o, V) = Z vk,
&
e = Ct, 1)1,

and by applying the energy method we obtain
d
7 W 0l = 20, PUss = 200, QUi

i T —|U0|2 = —JUIP.

After integration we get
@O, Po@) = @O PEO) e = 5 [ (0 + o .

By using the boundary condition, v, can be eliminated, and it
is easily shown that P is positive definite. Since P is bounded,
we get the estimate

o + [ Qesal + lon(l dr = constlflfe. (19)

Since the original boundary condition employs three points
Mg, U, Uy, We also need an estimate for v,. Forj = 2, 3, ... we
write (18) as

dv .
(PE;)) - (QU)J" J= 2’ 3! ey
vy =1,

where v, in the right-hand side of the boundary condition is
considered as a known function. For this new problem we use
the same technique as above. We construct a new auxiliary
problem for which we can derive an energy estimate including
the boundary values, and for the remaining part of the solution
we use the Laplace transform technigue and the Kreiss condition
o obtain an estimate. This time the auxiliary problem is

dwl .
(P E{)} - (Qw)]’ j - 23 31 srey
W) = W,
Wj(o) =i

In the same way as we obtained the estimate {(19), we now get
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)i + f (D + (D) dr = const | £l (20)
The grid function y; = v; ~ w; satisfies
dy\ .
(P dt)] - (Qy)_ﬂ J 21 3: srey
YiI=8 &iTU—w, VAY)
y(0)y = 0.

We have the following,

LemMa 3.3, The solution of (21) satisfies the estimate

J; |yj—(1')\2 dT = const. J'; le(D|Pdr, j=1,2,..
Proof. The Laplace transform of (21) is

f(Pﬁ)jzé(j)j*l _‘y‘f*])’ §=sh3j=21 3,v“a
=
”5’“1'” < ™,

g ™

with the solution

- -1

y} = g'IKfE 1 j: 1, 2, ceey

where k, is the solution of the characteristic equation (15} with
|#)] < 1 for Re(3) > 0. As explained in the proof of Lemma
3.2, k, is well defined for all §, Re(%) = 0. By integrating | $,|*
along the line Re s = 0, and using Parseval’s relation, we get

j: |y, (7)|? d7 = const. j: gdDPdr, j=1,2,..

As in Lemma 3.2 we can change to integration over a finite
time interval, and the lemma follows. |}

By this lemma, the definition of g, and the estimates (19),
(20), we now have an estimate

J; lvx(7)]? d < const. J; (JyA D + |wo( D)D) dr

= const. f ; (oA + [w( D] + wi D) dr

= const.||f]} -

We also need estimates for dv,/dt near the boundary. By
differentiating (18) with respect to t, we get the same differen-
tial-difference equation and boundary condition for ¢ = dv/
dt. Since at any time 7, we can solve boundedly for dv/dt in
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terms of Qu, we also have an initial condition for ¢, yielding

")

2
[lee( )} + f; > (9| dr = const. (
=0

the problem
dqb If a forcing function F;(¢) is introduced into the first equation
dr =@Qd)y, j=23 of (11), an extra term || ; | F(D|* d7 enters the right-hand side;
see [5]. The error estimate then follows immediately from
=, strong stability. The error ¢;(tr) = u(x;, t) — wu,(?) satisfies
1
$,(0) = - (R);. | o
(P d) ={Qe};, + O, j=1,2...
Here R is a bounded operator and, accordingly,
del ;
(P d_t)n = (Qe) + CW),

“¢’”1m = const. 27| f]],--
gMm =90

We now use the same procedure as above to derive estimates

for ¢. The results are summarized in the following. and we get from Theorem 3.1 the following.

CoroLLARY 3.1, The solution of (11) satisfies the error es-

Lemma 3.4, The solution of (18) satisfies the estimate
timate

We can now derive the final estimate for 1. The difference

o
dr

c (dum|’ [, ©) — w(0)] = const. A*
+ Jo Fzﬂ i dr Js i - A
< const. h MR-, »=0,1. At this point we have finished the analysis of the cutflow

problem, and we turn to the inflow problem,

z; = #; — v; (where u and v are the solutions of (11) and (18), =—t, 0=x<cw, 0=y
respectively) satisfies w(0, 1 = g(1), 22)
J u(x, 0) = f(x).
Z D
( df) Q) J= 12 When using the implicit difference operator to compute an
approximation v; of u,(x;, 1), we need a boundary condition for
dZ dv ) . . . , . . s
( P ) = Q2+ g~ ( P _) + (O, v;. From the dlffer_el_'lllal e.quatlon we get, after differentiating
dt drjo the boundary condition with respect to ¢,
ZJ(O) = 0' ul(()’ t) — _g’(f),

The operator P is bounded in the maximum norm, and @ is of 414 the approximation becomes
the order h~'. By applying Lemma 3.2 and Lemma 3.4, we get

1 1 .
' : g (Uj—l + 4Uj + Uj+|) = - ﬁ (uj+l - Mj_]), J= ], 2, veay
ol + [! 5l dr = const. [! { Ing(nP

iy} = g(1), (23)
dv, (7) vty = —g'(1),
+Z|U(T)|z+2} 1) = —g'®)
w(0) = £,
< const. (||f||2 + fﬂ lhg ()| dr), i=0,1,... which yields
d .
By the definition of z and by using Lemma 3.4 once again, we (P d_?) =—(Qu);, j=12,.,
have proved the following. !
W= g (24)

THeoREM 3.1.  The approximation (11) is strongly stable,
and the solution satisfies w{0) = £,
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where P is defined at inner points as in (9). Here it is tacitly
understood that the differentiated form of the boundary condi-
tion is used to define di/dt. Clearly, P is SPD in the space of
grid functions {u;}7" with compact support,

Corresponding to Lemma 3.2 we have the following.

Lemma 3.5,
the estimate

Consider (24) with f = 0, The solution satisfies

leeCo)|)? . + J; |i;(D|? d7 = const. J; lg(nPdr, j=1,2, ..

Proof. The Laplace transformed problem is

s(Pi), = —(Qf),, j=12,..,

= &,

with the characteristic equation

fki+de+ )= -3(k*-1, §=sh (25)

The coefficient of x? vanishes for § = —3, which does not
cause any trouble, since we are only interested in § located in
the right half-plane. Therefore, we get immediately

i = gxi,

where k; is the solution of the characteristic equation (25) with
;] < 1 for Re() > 0. Parseval’s relation yields

(PP dr<const. | |g(D]Fdr, j=0,1,.. (26)
o' 0

Applying the energy method and using (26), together with the
fact that P is SPD proves the lemma. |

Remark. For the outflow problem there is a gain of one
power of & in the estimate with respect to the boundary data.
For the inflow problem with a physical boundary condition,
this gain does not occur.

In order to prove strong stability, we use the same procedure
as for the outflow problem; it now becomes much simpler. As
our auxiliary problem we now take

dv .
(P dt)} - (Qu)j! J= ]s 25 ()
Uy = —Uy,
U,"(O) :f],
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leading to the estimate
ol + [} oo dr < constfli.. @7

The difference w; = u; — v; satisfies

dw .
(PE)J- =—(Qwy, j=12,..,
Wo = g — Up,

Lemma 3.5 now gives

”W(f)llz,sc = const. j;(lg(q-)ll + UD(T) 2) dr
= const.(|lf + [ [a(mfan).

The stability follows by using the definition of w and (27).

THeoreM 3.2.  The approximation (24) is strongly stable,
and the solution satisfies

2d7).

ol = const. (il + [ g

The only truncation error occurs in the difference approxima-
tion at inner points, and an G(A*} error estimate follows immedi-
ately.

Remark. The method of deriving stability and error esn-
mates presented here can be generalized to systems of PDE,
For the simple model example treated here we could have used
the following direct method.

Let ¢(x, ) be a smooth function with

¢(x’ 0) =f(x)!
such that
 |ld viu . ’
Jo | 4G s coms (11 + [ lsto ).

D=v+pu=1,

The difference v,(t) = w;(t) — ¢lx;, 1) satisfies
dv .
(PE),- =(Quy+F., j=12,..,
Uy = Os

v;(0) = 0,
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where

0P lhe s = const (lhe + [ g0l ).

The energy method gives
d d
o I L I T

d
= E(v, Pulo =2, PU)a
= 2(v, F), . = const.||PY%||, «||P"?F|\.o-

After dividing by ||P"v|| . and integrating, we get

lo(©)fh- = const|jP ], » = const. J; |P2F ()|} dT

= const. f; |F (). d7

= const. (“fH}_m + f; |g(7)| d'r),

which gives us the estimate for u.

4. NUMERICAL EXPERIMENTS

We will now investigate how the previcusly analyzed differ-
ence methods behave in practice when applied to two different
model problems. We have chosen the linear advection equation,
which will serve as a simple model for contact discontinuities
in fluid dynamics, and Burgers’ equation, which is used to
study how the schemes treat shocks and rarefaction waves.

Consider the scalar conservation law )

i+ F. =0,
w(x, 0) = f(x).

—1<<x<<1, >0,

(28)

Al the boundary we prescribe u = g if the characteristic is
ingoing. We will consider different implementations of the flux
derivative F,,

F,=F, (c-form),
F,=(F~G), + G'u,, (eform),
F.=F'u, (p-form), (29)

G = (1/1) ja F) dv.

The first expression of Eq. (29) is the usual conservative form;
the second form corresponds to the flux vector splitting that
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results in an energy estimate. The third variant, finally, is the
primitive form. These forms will lead to numerical methods
with different properties. It is possible to give a unified presenta-
tion by writing :

F, = (aF + BG), + (yF' + 8G"u,, (30)
where
a=1, B=0 ¥y=0, §=0 (c-form),
a=1, B=—-1, y=0, =1 (eform), (31
a=0 Bg=0, y=1, &=0 (p-form).
The flux F = F(u) is defined by
F(u=u advection equation),
(v ( q 32)

Fu)=u’/2 {(Burgers’ equation).

Thus, the initial-boundary value problem is defined by Egs.
(28), (30), 31), (32).
Next we formulate the semi-discrete problem,

% +(T(D(aF + BG) + (YF' + 8G")Dw)); = ((1 -7 %‘;i)_,

j=0,1,...N,
(33)

where u = (up ... uy)" is the grid function; F = (F; ... Fy),
G = (Gy ... Gv)", where F; = F(i;) is the analytic flux evaluated
at w;; the G/s are defined analogously. The operator F' is
defined by (F'v); = F'(u;)v;, j = 0, ..., N(F’(u;} is the Jacobian
of the analytic flux evaluated at u;) with a similar definition of
G'. We shall write F'(w;} = F;, G'(4;) = G; for brevity. The
operator T represents the analytic boundary conditions and g
contains the boundary data [12]. Finally, D is a difference
operator approximating &/0x to some order of accuracy; D can
be either explicit or implicit. Symbolically we write D = P7'Q,
where P and @ are local operators. In the case of explicit
operators we have P = I, and thus D = Q.

For explicit difference operators the boundary operator T is
defined by

60”0’ ] = 0,
(Tu); =< U j=12 ., N—1,
SIqu J= N,
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where

0 fFi>0, 0
1 otherwise, : 1

if Fpy<0,

otherwise.

The data g is given by g = (gDx ... x g, where g™ and
g are the analytic boundary data. It follows from Eq. (33)
that the boundary conditions are fulfilled for all time if the
initial data satisfies the boundary conditions. It is assumed that
the type of boundary condition remains the same for all time
at a given boundary point. One can always restart the process,
should there be a change at a time #,. We point out that the
¢-, e-, and p-forms lead to identical semi-discrete schemes for
the advection equation.

The implicit scheme is formally obtained by setting T = [/
and by enforcing the boundary conditions explicitly. Hence,

du;
f + (D{aF + BG) + (yF' + 6G")Du); =0, j=0,1,..,N,
(34)

subject to the constraints

wy=g" ifF;>0, uy=g" ifFy<0.
In the following we shall confine ourselves to the fourth-order
accurate operator D = P~'(Q discussed in Section 3. For outgo-

ing characteristics at the boundaries we then have

iy + 2uy, i=0,
1 .
(Pu)_, = E(uj_l + 4“} + uj:.H), 1= ], 2., ...,N - 1,
ZMN..l + Upr, j = N,
and
1 .
E(_Suﬂ + 4wy + 1), i=0,
_< 1 ,
(Q'u)_l - Z_h(_uj_l -+ uj+|), J= 1,2, ,Nk 1,
1 ,
E(_HN_Z = 4MN_1 + SHN), J= N.

Since the characteristics are assumed to be outgoing (corre-
sponding to the linear outflow case; cf. Section 3), no analytic
boundary conditions need to be enforced. Consequently, the
semi-discrete scheme (34) becomes
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du;
f +w; + ((yF' + 8G W), =0, j=0,1,..,N,

where v and w satisfy

(Pv); = (Quy;, (Pw); = (QlaF +BGY);, j=0,1,.,N.
On the other hand, if there are ingoing characteristics at both
boundaries, then no boundary modified stencils are needed,
since one can use the analytic boundary conditions to close P
and Q. Consider

(Pv)y = (Qu)y,
(Pw), = (QaF + BGY)y,

which is equivalent to

1 1 1 1
— (v + =—qy— Uy — —
6( v+ vg) h 177} 2h Uy 6 Uy,

1 i 1 (33)
< (4w, + w) = 5 (@F, + BGy) ~ - (aFy + BGy) — z .

Suppose that Fy > 0. Then we have the boundary condition
uo = g% which implies that F, = F(g"™) and G, = G(g™).
Furthermore, v, is an approximation of u,(—1, t). Using

_Fu g0
U= 7 F(g®)
we obtain
___ &
DY

Note that this expression is well defined, since F'(g®) > 0.
Similarly, w, approximates

aF (-1, 0+ BG(— 1,0 = (aF + BG (1,1
Using

g

u_x = _Fr(g(()j)

leads to the boundary approximation for wy

G'(g)
o2

Substituting these expressions into Eq. (35) yields
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1 1 1 1 g¥ and
—_ -+ = — 1)
gt ) =g g T )
1 1 1 (Qu); =
5 (@w, +wy) = - (aFy + BGy) — T (aF(g®) + BG{g™) ( |
ey, if Fy >0,
G( (())) 2h
+ B0 g, =0,
w5 (et o5 1 !
A (~—35u, + 4, + u;), otherwise,
The right boundary is treated analogously. Summing up, the
fourth-order implicit scheme is defined by Egs. (36)—(41), {0
ﬁ(_uj—l +uy), j=1,2,..N—1,
du;
—+w; +((vF'+8Gwy=0, j=0,1,.,.N, (36
5 Tty W) J (36) —ﬁuw, it F < 0,
where v and w are the solutions of 1 ) J=N.
ﬂ( uy-: — gy + Suy),  otherwise,
(Pv);={(Qu); + p;, (Pw)=(QaF + BGY);+ g, 37 .
j=0,1,..,N
The explicit structure of the difference operators P and @ will
be given shortly. We have moved the boundary such that x_; =
—1 and xy:, = 1in Egs. (36)—(41) in case of ingoing characteris-
tics. These extra boundary points have then been eliminated Finally,
by means of the analytic boundary conditions. This procedure .
will simplify the computer implementation of the algorithm, 1 45,1 8° _—
since the number of unknowns will be the same, regardless of T T eF( 2y itFo >0, 0
the direction of the characteristics (x_; and uy:, are known if ) 1 ’
the characteristics enter the domain): 0, otherwise,
i . =30 j=12 ., N—-1,
w(duy +uy), fF) >0,
‘o e =0, N N
* t y ' < >
Hy u1 otherwise 2,18 6 F'ig m) ifFy<0 j=N,
(Pu); = sy T 4w+ up), j= L2, N— 1, (3g L0, otherwise,
suyy + duy), ifFL<0,
i=N,
ZMN_| + Uy, OtherWiSE, and
F 1 1 G'{g®
_ﬁ (aF(g(D)) + BG(g(U))) + g (Ot + B Frgjg(g);) ggﬂ), if Fl; > Oa -0
J=u,
0, otherwise,
q;=4 0, j=12,.,N—-1,
1 1 G'(g" .
— (aF () + BG(g™) +—(a +B= M, ifFL <0,
2h( g IB g 6 B F (g(])) gi‘ N J — N,
Lo,
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otherwise,

(39)

(40)

(41)
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The numerical method (36)—(41) is discretized in time using
an explicit third-order TVD Runge—Kutta method [15],

't = — kL{u™),
1

3
W= Jur s Lul — :’iL(u“’), (42)
1 2 2 3
unﬂ — g w + E u(!) - ?kL(M(‘J),

where £ is the time step; L is the {non-linear) spatial operator
implicitly defined by Eqgs. (36)—(41). Although the spatial accu-
racy 1s of order four we still use the above third-order TVD
Runge-Kutta method because of its simplicity. It is possible
to construct TVD Runge—Kutta methods of higher order of
accuracy than three, but they are considerably more compli-
cated.

The existence of a smooth solution is the underlying assump-
tion when constructing high-order centered difference approxi-
mations. This assumption is obviously violated at shocks and
contact discontinuities. Spurious oscillations can be expected.
One way to overcome this problem is to introduce viscosity as
a filter. Let #"*! denote the output of Eq. (42). As a preliminary
step in the derivation of the filter we define the new time level as

wit = + 2 + G
=@+ iALAEY, j=1,2,.,N— L
All points will be filtered as the scheme stands above, To avoid

this effect we introduce a switch r; to turn off the filter outside
the spurious region,

M?+l = fIFJrl + % A+(rj,“2 A,Ij}l+l), J = ], 2, ...,N - 1. (43)
We have used a switch proposed by Jameson [6],
Al — A\
n:(l_“l_.,i), P=L2, L N—1, (44)
| + 1A g

where we have omitted the time index n + 1 in the right
member for simplicity. If A,# and A #; do not have the same
sign, which happens for high-frequent oscillations, then
r; = 1. For the remaining grid points we obviously have 0 =
r; << 1. Taking m = ¢ yields , = 0 away from the spurious
regions. The complete numerical algorithm is thus defined by
Eqs. (36)—(44).

In the first numerical experiment we solve the linear advec-
tion equation to see how well the explicit (E} and implicit (I)
fourth-order methods capture an oscillating solution with a
discontinuity in the derivative; for second-order methods one
can expect poor resolution at the point of discontinuity. The
results are compared with a those of a standard explicit second-
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FIG. 1. Second-order (+) solution vs true {(—) solution.

order centered finite difference method and a third-order accu-
rate TVD method using the following limiter function [15]

0, r<9,
2r, O=r<i
YO=Yar+ 13, d=r<y
2, r=%
As initial data we use
—asintkrx), x<0,
Rix,a, k) =
X, x=0,

with @ = 0.1 and &k = 6. The solutions are plotted at r = 0.5
(Figs. 1-4).

ke, 0) = R(x0.1.6), u-11l=0 t=05 nai00. CFL=0.65

LX

Advection squalion, dihordar {E], c-lorm

:1 08 06 04 02 o 0z 04 08 98 1

FIG. 2. Fourth-order (E) (+) solution vs true () solution.
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FIG. 3. Fourth-order (I} (+) solution vs true (—) solution,

The fourth-order methods clearly resolve the discontinuities
much better. It should be noted that no artificial viscosity (filter)
has been used for the second- and fourth-order schemes.

Next we study how many grid points are needed to achieve
a certain tolerance level & = |u, — ul.., where u, is the numeri-
cally computed solution. Again we use R(x, 0.1, 6) as initial
data and present the solutions at ¢ = 0.5. We have chosen
g ~= (.04.

Thus, the fourth-order methods achieve the same level of
accuracy as the second-order method, using only half (explicit)
or one-third (implicit) the number of grid points. No artificial
viscosity was used. We have set the CFL-number to 0.05 to
suppress errors due to the time discretization (see Figs. 5-7).

To simulate contact discontinuities we again solve the linear
advection equation, this time using piecewise continuous ini-
tial data,

utx0) = Ax0.16), u-1H=d, tw0S, nw100, CFL=085

05 "
o4}

o

w

o

Foal

¢

£ |
%u- -
-

N os 08 a4 062 0 02 04 o8 08 1

FIG. 4. Third-order TVD (+) solution vs true (—) solution.
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FIG. 6. Fourth-order (B), [, — |- = 0.032 for 48 grid points.
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]
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Fourth-order (I}, |ju; — uf. = 0.031 for 34 grid points,
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FIG. 8. Contact discontinuity, second order.

up, x<0,

Hix, uy, ug) = {

g, x=0.

with u;, = 1, 2 = 0. At x = —1 we prescribe u(—1, 1) = 0.
The resulting solution is a square wave traveling with speed 1
to the right. The fourth-order methods are compared with the
standard second-order method and a third-order TVD scheme.
It is evident from the following figures that the fourth-order
methods are superior {0 the second-order method. In fact, the
fourth-order solutions are cornparable to that of the third-order
TVD scheme. For the centered difference schemes we used the
previously described filter (Figs. 8—11).

We next solve the Riemann problem for Burgers’ equation.
For shocks we have used the initial data H(x, 1, 0) and the
boundary data u{—1, r) = 1. We include the third-order TVD
solution as a reference.

The e-form of the fourth-order methods was used, since it

ufX,0) = Hi,1.0), ui-1.ti=d. 1205 na=100. CRL =085

1.2 - —
1t W
E
2
: 0.8F L 4 h
[0
g Q.8
e *
g
-g 0.2t ﬂ +
g .
L i iadiai 8
0.2 .

-1 -04 0.6 04 -0.2 Q o2 0.4 06 o4 t

FIG. 9. Contact discontinuity, fourth-order (E).
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F1G. 10. Contact discontinuity, fourth-order (I).
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FIG. 11. Contact discontinuity, third-order TVD.
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FIG. 12. Shock, fourth-order (E).
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FIG. 13. Sheck, fourth-order (I).

appears to be less oscillatory at the shock than the other forms.
The filter was turned on in a neighborhood of the shock. The
fourth-order methods generate almost as crisp a shock profile—
albeit somewhat more oscillatory-—as the third-order TVD
scheme (Figs. 12—14).

Finally we solve Burgers’ equation for a rarefaction wave.
As initial data we take H(x, — I, 1). For the fourth-order methods
we use the c-form as well as the e-form wirhout artificial viscos-
ity. The c-form evidently violates the entropy conditions,
whereas the e-form produces an entropy satisfying rarefaction
wave (Figs. 15-19).

5. DISCUSSION
In this paper we have studied explicit and implicit fourth-

order difference operators for hyperbolic initial-boundary
value problems. Presently there exists no general procedure

ul®,0) = HX.1.0), U-1,)m1, t=m0.5 nel10) CF. =065
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FIG. 14. Shock, third-order TVD.
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FIG. 15. Rarefaction shock, fourth-order (E), c-form.
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FIG. 16. Rarefaction wave, fourth-order (E), e-form.
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FIG. 17. Rarefaction shock, fourth-crder (I), ¢-form.




FOURTH-ORDER DIFFERENCE METHODS

Ux,0) m Hix-1,1), 1=05 na 100 CFL=085

bt
o n -

&
wn

Burgers’ squation, 4th orded (1), e-lom

i 08 06 Q4 02 ¢ 9.2 0.4 08 08 1

FIG. 18. Rarefaction wave, fourth-order {I), e-form.

for establishing stability of implicit high-order difference
approximations if one wants to enforce the analytic boundary
conditions explicidy [5, Eq. (23)]. We have presented a
complete stability analysis of an implicit fourth-order accurate
difference operator for the initial-boundary value problem.
The boundary points are eliminated by means of the analytic
boundary conditions; at boundary points where there are no
analytic boundary conditions we use one-sided stencils. The
stability result then follows using Laplace transform tech-
niques. The result of the stability analysis forms the basis
for the actual computer implementation of the fourth-order
implicit operator.

For implicit and explicit difference operators having one-
sided differences at every boundary point there is a well-devel-
oped stability theory based on the energy method. The analytic
boundary conditions are then enforced by adding a penalty

Ufx0) = Hix-1,1), t=05, n=100, CFL=0.85
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FIG. 19. Rarefaction wave, third-order TVD.
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function or a projection to the semi-discrete system {3, 12].
We have followed the approach in [12] for the implementation
of the explicit fourth-order operator.

It has been numerically verified that the fourth-order meth-
ods studied in this paper are more efficient than the standard
second-order one. For the linear test problem, Figs. 1-4
show that discontinuities in the derivative and high frequency
data are better resclved using the high-order difference meth-
ods. Also, they are more efficient to achieve a certain tolerance
level (Figs. 5-7). In the one-dimensional case we obtained
a reduction of grid points by a factor of two for the explicit
fourth-order method, and by a factor of three for the implicit
operator. This is true for each space dimension. Thus, in
three dimensions one would obtain a reduction by a factor
of 8 or 27, respectively. Since the work grows linearly it
is natural to assume that high-order methods would be even
more efficient for multidimensional problems. We emphasize
that no artificial viscosity was used in the previous test
cases.

The fourth-order methods are good candidates for handling
the case where the data is piecewise continuous. This is illus-
trated in Figs. 8—11. Artificial viscosity was needed to control
spurious oscillations in this case. The performance of the fourth-
order methods is comparable to that of a third-order TVD
method.

The numerical experiments were concluded by solving Burg-
ers’ equation, Two different forms of the flux derivative was
implemented: the c-form and the e-form. The c-form is the
usual conservative form, and it may lead to entropy violating
solutions for both the implicit and explicit operators, see Figs.
15 and 17. The e-form, however, picked up the entropy satis-
fying solution without using artificial viscosity (Figs. 16 and
18). Indeed, in a forthcoming paper it will be shown that for
diagonal norms H one can prove an entropy condition for the
semi-discrete system if the e-form is used. Furthermore, shocks
are treated satisfactorily after adding artificial viscosity; cf.
Figs. 12-14.

In summary, there is & complete stability theory for the
high-order methods that we have used. The theoretical proper-
ties have been verified through numerical experiments. For
nonlinear conservation laws these high-order methods work
as well as specially constructed high-order TVD schemes;
for linear problems with high frequency solutions {or disconti-
nuities in the derivative) the difference methods work better
than the TVD schemes. Another attractive feature of these
difference methods is the simplicity of their computer imple-
mentation. We anticipate that these methods will generalize
well to systems of conservation laws, where all phenomena
(shocks, contact discontinuities, etc.} may be present at the
same time.
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APPENDIX

Fourth-order accurate difference operator with third-order
boundary closure satisfying Eq. (5):

1 .
W (dootty + doitty + ditty + doziis), j=0,
1 .
Z(dmuu + dyuy + diity + disus + dygis t disits), J=1
1 .
W (dutty + dytty + dptty + dosits + dagity + dysts), i=2,
(Du); = 9 1
E (d}o“o + d;iul + d_u“z + d33M3 + d34u4 + d35M5 + d}ﬁuﬁ), _] = 3,
1 .
E(dd,ouo + dutty + dpuy + digtes + dygtia + dusits + digite).  j= 4,
1 .
L 2h (2 — By + Buyyy — w5200, j=25,6,...
The corresponding norm is defined by fadyp = —12(—380966843 + 86315+/26116807)
fady = (5024933015 + 2010631+/26116897)/3
- fadzy = ~231(—431968921 + 86711+/26116897)/2
Aoty , ji=0, fadys = (—65931742559 + 12256337 /26116897)
. Faduy = —(—30507298167 + 9716873/26116897)/6
hute, + Rty + By + Pogua, j= 1, adys = —88(— 15453061 + 2911-/76116857)
Pty + Bty + hoglts + hogts, = 2,
(Hw), = 2t T ally T Pty T Pl R = 48(—56020900845192541 + 0790130507043/ 26116897}
g Rty + Aguy + Ry + By, =3, fidn = (—9918240049237586011 + 1463702013196501/26116897)/6
Bt + hostto -+ hogie 4 B 4 Fiday = —13(~1130451756851441723 + 66427870720107Tv/T6116897)
14l) T Fialty T Ayghty T by J = 5 fidgs = 3(—26037108467782666617 + 5169063172799767+/ 26116807 }/2
¥, j=5.6,... fidia = —(6548308508012371315 + J968886380989379+/26116897)/3
. fuds = B88(—91337851807923397 + 19696768305507/26116897)
fadys = 242(—120683 + 15v/26116807)
The elements d; are given by fodio = 264(—120683 + 15+/25116897)
fada = {—43118111 + 23357+/25116897)/3
" fadiz = —47(—28770085 + 2259/26116807)/2
do=—% fadg = —3(1003619433 + 11777./26116897)
Fodas = —11{—384168269 + 65747,/ 2611637 )/4
dy =3 fades = 22(87290207 4 10221+/26116397)
5 fadyg = ~66{3692405 + 419+/Z6116897)
dp = —3
. [ = —56764003702447356523 + 8154993476273221+/26116897
dpy =3 £, = —55804550303 - 0650225/ 26116897
fy = 3262210757 + 271861/26116897
fudw =  —24{—-TT904281D827742869 + 104535124033147/26116897)
fidu = —(—176530817412806109689 + 29768274816875927 /261 16807 )/6
fida = 343(—171079116122226871 + 27075630462649+/26116897)

fidiy = —3(—T475554291248533227 + 1648464218793925+/26116807)/2

fidiy = (~2383792768180030915 + 1179620587812973+/26116897)/3
fidis = —1232{—-115724529581315 + 37280576429+ 26116897) The elements k., are given by
if



fioo
fhi
Fhag
Fhaz
Sfhiy
fha
fhaa
Shay
fhaa

Thaa

where f = 591223 + 146Vv26116897. In decimal form the

Sl

Il ]

[/l
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(299913292801 + 56278767+/26116897) /228096
—(64756272879 + 310129+/26116897) /76032

—(—50615837729 + 5284177+/26116897)/ 76032 !
(—502670194] + 948741+/26116897 )/20736

~T{—6989673895 + 13527+/26116897) /25344

49(~657605303 + 100423+/26116897)/25344

—49(— 75022899 + 14467\/FG116897 )/6912 3.

—(—45333081425 + 982369+/26116897)/25344

(—3355209517 + 597005/26116897 /6912

3(35213725709 + 5139171./26116807 }/228096

elements d; can be expressed as

mwanninun oo

i unmin

[ T T T

]

i

o

—1.33233333333333333333333333333
3
—1.5000000000300000¢000000060000
0.333333333333333333333333333333

-(.389422071485311842975177265601
—(0.269537633034869460503559633382
0.639037937659262938432677856177
0.0943327360845463774750968877542
—0.0805183715808445133581024825053
0.00610740835721650092906463 755986

0.111249966676253227197631191910
—0.786153109432785509340645292043
0.198779437635276432052935915731
0.50808067692835148 7908752085978
—0.02413706241 2656370601886 7104972
—0,007819909394439267216738719106473

0.01905120609488501904 78223587424
0.0269311042007326141816664674714
—~0.633860292039252305642283500160
0.0317T26709186493664626388177642
0.592764606048564306931634491846
—0.0543688142698406758774679261364
—0.00229048035413832510406070952285

—0.00249870649542362738624804675220
0.00546392445304455008494 236684033
0.0870248056130£93154450416111555
—0.686097670431383548237962511317
(.0189855304809436619879348998897
0.659895344563505072850627735852
—0.0827732281897054247443360556719
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